Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuropsychol Rehabil ; : 1-39, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430123

RESUMO

The objective is to study the effectiveness of working memory (WM) rehabilitation after Acquired brain injury (ABI) and multiple sclerosis (MS). A systematic database search of published studies, following PRISMA recommendations, with assessment of methodological quality and risk of bias, was conducted. The results were analysed according to the rehabilitation method used. 31 studies (including 14 class I) were included, and 11 different training programs were identified. Despite great variability in training methodology and outcome measures, the results were positive overall. However, only three rehabilitation programs showed a transfer effect to WM (near) and daily life with long-term maintenance. The results were more variable for protocols limited to the use of computerized n-back training tasks. Overall, the current evidence supports multi-task WM training rather than single-task-limited program. It also supports early and long duration training, with some therapist support. However, it is not possible, to date, to make strong recommendations regarding the rehabilitation program to be used preferentially. Although results are encouraging, level of evidence remains modest, particularly regarding the maintenance of the therapeutic effect after the end of training, and the transfer to everyday life skills. The influence of rehabilitation parameters (training duration, therapist involvement … ) remains difficult to assess.

2.
Acta Neuropathol Commun ; 10(1): 112, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974399

RESUMO

Alzheimer's disease (AD) is characterized by intracerebral accumulations of extracellular amyloid-ß (Aß) plaques and intracellular tau pathology that spread in the brain. Three types of tau lesions occur in the form of neuropil threads, neurofibrillary tangles, and neuritic plaques i.e. tau aggregates within neurites surrounding Aß deposits. The cascade of events linking these lesions and synaptic or memory impairments are still debated. Intracerebral infusion of human AD brain extracts in Aß plaque-bearing mice that do not overexpress pathological tau proteins induces tau pathologies following heterotopic seeding of mouse tau protein. There is however little information regarding the downstream events including synaptic or cognitive repercussions of tau pathology induction in these models. In the present study, human AD brain extracts (ADbe) and control-brain extracts (Ctrlbe) were infused into the hippocampus of Aß plaque-bearing APPswe/PS1dE9 mice. Memory, synaptic density, as well as Aß plaque and tau aggregate loads, microgliosis, astrogliosis at the inoculation site and in connected regions (perirhinal/entorhinal cortex) were evaluated 4 and 8 months post-inoculation. ADbe inoculation produced the following effects: (i) memory deficit; (ii) increased Aß plaque deposition in proximity to the inoculation site; (iii) tau pathology induction; (iv) appearance of neuropil threads and neurofibrillary tangles next to the inoculation site with a spreading to connected regions. Neuritic plaque pathology was detected in both ADbe- and Ctrlbe-inoculated animals but ADbe inoculation increased the severity close to and at distance of the inoculation site. (v) Finally, ADbe inoculation reduced synaptic density in the vicinity to the inoculation site and in connected regions as the perirhinal/entorhinal cortex. Synaptic impairments were correlated with increased severity of neuritic plaques but not to other tau lesions or Aß lesions, suggesting that neuritic plaques are a culprit for synaptic loss. Synaptic density was also associated with microglial load.


Assuntos
Doença de Alzheimer , Placa Amiloide , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/patologia , Humanos , Camundongos , Emaranhados Neurofibrilares/patologia , Placa Amiloide/patologia , Proteínas tau/metabolismo
3.
Acta Neuropathol Commun ; 9(1): 165, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34641980

RESUMO

Amyloid-ß (Aß) pathology transmission has been described in patients following iatrogenic exposure to compounds contaminated with Aß proteins. It can induce cerebral Aß angiopathy resulting in brain hemorrhages and devastating clinical impacts. Iatrogenic transmission of tau pathology is also suspected but not experimentally proven. In both scenarios, lesions were detected several decades after the putatively triggering medico-surgical act. There is however little information regarding the cognitive repercussions in individuals who do not develop cerebral hemorrhages. In the current study, we inoculated the posterior cingulate cortex and underlying corpus callosum of young adult primates (Microcebus murinus) with either Alzheimer's disease or control brain extracts. This led to widespread Aß and tau pathologies in all of the Alzheimer-inoculated animals following a 21-month-long incubation period (n = 12) whereas none of the control brain extract-inoculated animals developed such lesions (n = 6). Aß deposition affected almost all cortical regions. Tau pathology was also detected in Aß-deposit-free regions distant from the inoculation sites (e.g. in the entorhinal cortex), while some regions adjacent, but not connected, to the inoculation sites were spared (e.g. the occipital cortex). Alzheimer-inoculated animals developed cognitive deficits and cerebral atrophy compared to controls. These pathologies were induced using two different batches of Alzheimer brain extracts. This is the first experimental demonstration that tau can be transmitted by human brain extracts inoculations in a primate. We also showed for the first time that the transmission of widespread Aß and tau pathologies can be associated with cognitive decline. Our results thus reinforce the need to organize a systematic monitoring of individuals who underwent procedures associated with a risk of Aß and tau iatrogenic transmission. They also provide support for Alzheimer brain-inoculated primates as relevant models of Alzheimer pathology.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Encéfalo/metabolismo , Encéfalo/patologia , Disfunção Cognitiva , Proteínas tau/toxicidade , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Cheirogaleidae , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Humanos , Doença Iatrogênica
4.
Eur J Neurosci ; 54(10): 7642-7653, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34716630

RESUMO

Interoceptive accuracy (IAc), the precision with which one assesses the signals arising from one's own body, is receiving increasing attention in the literature. IAc has mainly been approached as an individual trait and has been investigated through the cardiac modality using mostly non-ecological methods. Such studies consensually designate the anterior insular cortex as the main brain correlate of IAc. However, there is a lack of brain imaging studies investigating IAc in a broader and more ecological way. Here, we used a novel ecological task in which participants monitored their general bodily reactions to external events and investigated brain regions subtending intraindividual (i.e. trial-by-trial) variations of IAc. At each trial, participants had to rate the intensity of their bodily reactions to an emotional picture. We recorded participants' skin conductance response (SCR) to the picture as an indicator of actual physiological response intensity. We fitted a functional magnetic resonance imaging (fMRI) model using, as regressors, the SCR value, the rating and the product of the two (as a proxy of participants' IAc) obtained trial per trial. We observed that activity in the dorsomedial prefrontal cortex (dmPFC) increased when individuals' IAc decreased. This result reveals general mechanism of error processing in intraindividual variations of IAc, which are unspecific to interoception. Our result has a practical impact in the clinical domain. Namely, it supports the predictive coding framework whereby IAc deficits may reflect impairments in processing a mismatch between actual interoceptive signals and predictions.


Assuntos
Interocepção , Atenção , Córtex Cerebral , Emoções , Frequência Cardíaca , Humanos , Imageamento por Ressonância Magnética
5.
Neuroimage ; 226: 117589, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33248260

RESUMO

Measures of resting-state functional connectivity allow the description of neuronal networks in humans and provide a window on brain function in normal and pathological conditions. Characterizing neuronal networks in animals is complementary to studies in humans to understand how evolution has modelled network architecture. The mouse lemur (Microcebus murinus) is one of the smallest and more phylogenetically distant primates as compared to humans. Characterizing the functional organization of its brain is critical for scientists studying this primate as well as to add a link for comparative animal studies. Here, we created the first functional atlas of mouse lemur brain and describe for the first time its cerebral networks. They were classified as two primary cortical networks (somato-motor and visual), two high-level cortical networks (fronto-parietal and fronto-temporal) and two limbic networks (sensory-limbic and evaluative-limbic). Comparison of mouse lemur and human networks revealed similarities between mouse lemur high-level cortical networks and human networks as the dorsal attentional (DAN), executive control (ECN), and default-mode networks (DMN). These networks were however not homologous, possibly reflecting differential organization of high-level networks. Finally, cerebral hubs were evaluated. They were grouped along an antero-posterior axis in lemurs while they were split into parietal and frontal clusters in humans.


Assuntos
Atlas como Assunto , Encéfalo/diagnóstico por imagem , Cheirogaleidae , Rede de Modo Padrão/diagnóstico por imagem , Adulto , Animais , Atenção/fisiologia , Encéfalo/fisiologia , Rede de Modo Padrão/fisiologia , Função Executiva/fisiologia , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Descanso
6.
Neurobiol Aging ; 91: 148-159, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32229027

RESUMO

Steadily aging populations result in a growing need for research regarding age-related brain alterations and neurodegenerative pathologies. By allowing a good translation of results to humans, nonhuman primates, such as the gray mouse lemur Microcebus murinus, have gained attention in this field. Our aim was to examine correlations between atrophy-induced brain alterations and age, with special focus on sex differences in mouse lemurs. For cerebral volumetric measurements, in vivo magnetic resonance imaging was performed on 59 animals (28♀♀/31♂♂) aged between 1.0 to 11.9 years. Volumes of different brain regions, cortical thicknesses, and ventricular expansions were evaluated. Analyses revealed significant brain atrophies with increasing age, particularly around the caudate nucleus, the thalamus, and frontal, parietal, and temporo-occipital regions. Especially old females showed a strong decline in cingulate cortex thickness and had higher values of ventricular expansion, whereas cortical thickness of the splenium and occipital regions decreased mainly in males. Our study, thus, provides first evidence for sex-specific, age-related brain alterations in a nonhuman primate, suggesting that mouse lemurs can help elucidating the mechanism underlying sex disparities in cerebral aging, for which there is mixed evidence in humans.


Assuntos
Envelhecimento/patologia , Encéfalo/patologia , Cheirogaleidae , Caracteres Sexuais , Animais , Atrofia , Encéfalo/diagnóstico por imagem , Feminino , Imageamento por Ressonância Magnética , Masculino
7.
Acta Neuropathol Commun ; 7(1): 126, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31481130

RESUMO

Alzheimer's disease is characterized by cognitive alterations, cerebral atrophy and neuropathological lesions including neuronal loss, accumulation of misfolded and aggregated ß-amyloid peptides (Aß) and tau proteins. Iatrogenic induction of Aß is suspected in patients exposed to pituitary-derived hormones, dural grafts, or surgical instruments, presumably contaminated with Aß. Induction of Aß and tau lesions has been demonstrated in transgenic mice after contamination with Alzheimer's disease brain homogenates, with very limited functional consequences. Unlike rodents, primates naturally express Aß or tau under normal conditions and attempts to transmit Alzheimer pathology to primates have been made for decades. However, none of earlier studies performed any detailed functional assessments. For the first time we demonstrate long term memory and learning impairments in a non-human primate (Microcebus murinus) following intracerebral injections with Alzheimer human brain extracts. Animals inoculated with Alzheimer brain homogenates displayed progressive cognitive impairments (clinical tests assessing cognitive and motor functions), modifications of neuronal activity (detected by electroencephalography), widespread and progressive cerebral atrophy (in vivo MRI assessing cerebral volume loss using automated voxel-based analysis), neuronal loss in the hippocampus and entorhinal cortex (post mortem stereology). They displayed parenchymal and vascular Aß depositions and tau lesions for some of them, in regions close to the inoculation sites. Although these lesions were sparse, they were never detected in control animals. Tau-positive animals had the lowest performances in a memory task and displayed the greatest neuronal loss. Our study is timely and important as it is the first one to highlight neuronal and clinical dysfunction following inoculation of Alzheimer's disease brain homogenates in a primate. Clinical signs in a chronic disease such as Alzheimer take a long time to be detectable. Documentation of clinical deterioration and/or dysfunction following intracerebral inoculations with Alzheimer human brain extracts could lead to important new insights about Alzheimer initiation processes.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Encefalopatias/diagnóstico por imagem , Encefalopatias/genética , Encéfalo/diagnóstico por imagem , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Encefalopatias/patologia , Cheirogaleidae , Eletroencefalografia/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Camundongos Transgênicos , Primatas , Especificidade da Espécie
8.
Commun Biol ; 2: 107, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30911682

RESUMO

Recent data confirmed the efficiency of caloric restriction for promoting both healthspan and lifespan in primates, but also revealed potential adverse effects at the central level. This paper proposes perspectives and future directions to counterbalance potential adverse effects. Efforts should be made in combining nutrition-based clinical protocols with therapeutic and/or behavioral interventions to aim for synergetic effects, and therefore delay the onset of age-related diseases without adverse effects.


Assuntos
Restrição Calórica , Longevidade , Primatas , Animais , Estimativa de Kaplan-Meier , Camundongos
9.
Neuroimage ; 185: 85-95, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30326295

RESUMO

The gray mouse lemur (Microcebus murinus) is a small prosimian of growing interest for studies of primate biology and evolution, and notably as a model organism of brain aging. As brain atlases are essential tools for brain investigation, the objective of the current work was to create the first 3D digital atlas of the mouse lemur brain. For this, a template image was constructed from in vivo magnetic resonance imaging (MRI) data of 34 animals. This template was then manually segmented into 40 cortical, 74 subcortical and 6 cerebro-spinal fluid (CSF) regions. Additionally, we generated probability maps of gray matter, white matter and CSF. The template, manual segmentation and probability maps, as well as imaging tools used to create and manipulate the template, can all be freely downloaded. The atlas was first used to automatically assess regional age-associated cerebral atrophy in a cohort of mouse lemurs previously studied by voxel based morphometry (VBM). Results based on the atlas were in good agreement with the VBM ones, showing age-associated atrophy in the same brain regions such as the insular, parietal or occipital cortices as well as the thalamus or hypothalamus. The atlas was also used as a tool for comparative neuroanatomy. To begin with, we compared measurements of brain regions in our MRI data with histology-based measures from a reference article largely used in previous comparative neuroanatomy studies. We found large discrepancies between our MRI-based data and those of the reference histology-based article. Next, regional brain volumes were compared amongst the mouse lemur and several other mammalian species where high quality volumetric MRI brain atlases were available, including rodents (mouse, rat) and primates (marmoset, macaque, and human). Unlike those based on histological atlases, measures from MRI atlases indicated similar cortical to cerebral volume indices in all primates, including in mouse lemurs, and lower values in mice. On the other hand, white matter to cerebral volume index increased from rodents to small primates (mouse lemurs and marmosets) to macaque, reaching their highest values in humans.


Assuntos
Atlas como Assunto , Encéfalo/anatomia & histologia , Cheirogaleidae/anatomia & histologia , Imageamento Tridimensional/métodos , Envelhecimento , Anatomia Comparada , Animais , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Masculino
10.
Data Brief ; 21: 1178-1185, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30456231

RESUMO

We present a dataset made of 3D digital brain templates and of an atlas of the gray mouse lemur (Microcebus murinus), a small prosimian primate of growing interest for studies of primate biology and evolution. A template image was constructed from in vivo magnetic resonance imaging (MRI) data of 34 animals. This template was then manually segmented into 40 cortical, 74 subcortical and 6 cerebro-spinal fluid (CSF) regions. Additionally, the dataset contains probability maps of gray matter, white matter and CSF. The template, manual segmentation and probability maps can be downloaded in NIfTI-1 format at https://www.nitrc.org/projects/mouselemuratlas. Further construction and validation details are given in "A 3D population-based brain atlas of the mouse lemur primate with examples of applications in aging studies and comparative anatomy" (Nadkarni et al., 2018) [1], which also presents applications of the atlas such as automatic assessment of regional age-associated cerebral atrophy and comparative neuroanatomy studies.

11.
Commun Biol ; 1: 30, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271916

RESUMO

The health benefits of chronic caloric restriction resulting in lifespan extension are well established in many short-lived species, but the effects in humans and other primates remain controversial. Here we report the most advanced survival data and the associated follow-up to our knowledge of age-related alterations in a cohort of grey mouse lemurs (Microcebus murinus, lemurid primate) exposed to a chronic moderate (30%) caloric restriction. Compared to control animals, caloric restriction extended lifespan by 50% (from 6.4 to 9.6 years, median survival), reduced aging-associated diseases and preserved loss of brain white matter in several brain regions. However, caloric restriction accelerated loss of grey matter throughout much of the cerebrum. Cognitive and behavioural performances were, however, not modulated by caloric restriction. Thus chronic moderate caloric restriction can extend lifespan and enhance health of a primate, but it affects brain grey matter integrity without affecting cognitive performances.

12.
Aging (Albany NY) ; 9(1): 173-186, 2016 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-28039490

RESUMO

Age-associated cognitive impairment is a major health and social issue because of increasing aged population. Cognitive decline is not homogeneous in humans and the determinants leading to differences between subjects are not fully understood. In middle-aged healthy humans, fasting blood glucose levels in the upper normal range are associated with memory impairment and cerebral atrophy. Due to a close evolutional similarity to Man, non-human primates may be useful to investigate the relationships between glucose homeostasis, cognitive deficits and structural brain alterations. In the grey mouse lemur, Microcebus murinus, spatial memory deficits have been associated with age and cerebral atrophy but the origin of these alterations have not been clearly identified. Herein, we showed that, on 28 female grey mouse lemurs (age range 2.4-6.1 years-old), age correlated with impaired fasting blood glucose (rs=0.37) but not with impaired glucose tolerance or insulin resistance. In middle-aged animals (4.1-6.1 years-old), fasting blood glucose was inversely and closely linked with spatial memory performance (rs=0.56) and hippocampus (rs=-0.62) or septum (rs=-0.55) volumes. These findings corroborate observations in humans and further support the grey mouse lemur as a natural model to unravel mechanisms which link impaired glucose homeostasis, brain atrophy and cognitive processes.


Assuntos
Atrofia/patologia , Glicemia/análise , Córtex Cerebral/patologia , Disfunção Cognitiva/sangue , Jejum/sangue , Memória Espacial/fisiologia , Fatores Etários , Animais , Atrofia/sangue , Atrofia/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Cheirogaleidae , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Feminino , Tamanho do Órgão/fisiologia
13.
PLoS One ; 10(12): e0146238, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26716699

RESUMO

The mouse lemur (Microcebus murinus) is a promising primate model for investigating normal and pathological cerebral aging. The locomotor behavior of this arboreal primate is characterized by jumps to and from trunks and branches. Many reports indicate insufficient adaptation of the mouse lemur to experimental devices used to evaluate its cognition, which is an impediment to the efficient use of this animal in research. In order to develop cognitive testing methods appropriate to the behavioral and biological traits of this species, we adapted the Lashley jumping stand apparatus, initially designed for rats, to the mouse lemur. We used this jumping stand apparatus to compare performances of young (n = 12) and aged (n = 8) adults in acquisition and long-term retention of visual discriminations. All mouse lemurs completed the tasks and only 25 trials, on average, were needed to master the first discrimination problem with no age-related differences. A month later, all mouse lemurs made progress for acquiring the second discrimination problem but only the young group reached immediately the criterion in the retention test of the first discrimination problem. This study shows that the jumping stand apparatus allows rapid and efficient evaluation of cognition in mouse lemurs and demonstrates that about half of the old mouse lemurs display a specific deficit in long-term retention but not in acquisition of visual discrimination.


Assuntos
Envelhecimento/fisiologia , Cognição/fisiologia , Lemur/fisiologia , Locomoção/fisiologia , Animais , Discriminação Psicológica/fisiologia , Percepção de Distância/fisiologia , Masculino , Retenção Psicológica/fisiologia
14.
Cognition ; 133(1): 120-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25014360

RESUMO

Eye contact is a typical human behaviour known to impact concurrent or subsequent cognitive processing. In particular, it has been suggested that eye contact induces self-awareness, though this has never been formally proven. Here, we show that the perception of a face with a direct gaze (that establishes eye contact), as compared to either a face with averted gaze or a mere fixation cross, led adult participants to rate more accurately the intensity of their physiological reactions induced by emotional pictures. Our data support the view that bodily self-awareness becomes more acute when one is subjected to another's gaze. Importantly, this effect was not related to a particular arousal state induced by eye contact perception. Rejecting the arousal hypothesis, we suggest that eye contact elicits a self-awareness process by enhancing self-focused attention in humans. We further discuss the implications of this proposal.


Assuntos
Nível de Alerta/fisiologia , Atenção/fisiologia , Fixação Ocular/fisiologia , Interocepção/fisiologia , Autoimagem , Percepção Social , Adulto , Emoções/fisiologia , Expressão Facial , Feminino , Resposta Galvânica da Pele/fisiologia , Humanos , Masculino , Adulto Jovem
15.
Front Aging Neurosci ; 6: 82, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24834052

RESUMO

Cerebral atrophy is one of the most widely brain alterations associated to aging. A clear relationship has been established between age-associated cognitive impairments and cerebral atrophy. The mouse lemur (Microcebus murinus) is a small primate used as a model of age-related neurodegenerative processes. It is the first non-human primate in which cerebral atrophy has been correlated with cognitive deficits. Previous studies of cerebral atrophy in this model were based on time consuming manual delineation or measurement of selected brain regions from magnetic resonance images (MRI). These measures could not be used to analyse regions that cannot be easily outlined such as the nucleus basalis of Meynert or the subiculum. In humans, morphometric assessment of structural changes with age is generally performed with automated procedures such as voxel-based morphometry (VBM). The objective of our work was to perform user-independent assessment of age-related morphological changes in the whole brain of large mouse lemur populations thanks to VBM. The study was based on the SPMMouse toolbox of SPM 8 and involved thirty mouse lemurs aged from 1.9 to 11.3 years. The automatic method revealed for the first time atrophy in regions where manual delineation is prohibitive (nucleus basalis of Meynert, subiculum, prepiriform cortex, Brodmann areas 13-16, hypothalamus, putamen, thalamus, corpus callosum). Some of these regions are described as particularly sensitive to age-associated alterations in humans. The method revealed also age-associated atrophy in cortical regions (cingulate, occipital, parietal), nucleus septalis, and the caudate. Manual measures performed in some of these regions were in good agreement with results from automatic measures. The templates generated in this study as well as the toolbox for SPM8 can be downloaded. These tools will be valuable for future evaluation of various treatments that are tested to modulate cerebral aging in lemurs.

16.
Front Behav Neurosci ; 8: 446, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25620921

RESUMO

Owing to a similar cerebral neuro-anatomy, non-human primates are viewed as the most valid models for understanding cognitive deficits. This study evaluated psychomotor and mnesic functions of 41 young to old mouse lemurs (Microcebus murinus). Psychomotor capacities and anxiety-related behaviors decreased abruptly from middle to late adulthood. However, mnesic functions were not affected in the same way with increasing age. While results of the spontaneous alternation task point to a progressive and widespread age-related decline of spatial working memory, both spatial reference and novel object recognition (NOR) memory tasks did not reveal any tendency due to large inter-individual variability in the middle-aged and old animals. Indeed, some of the aged animals performed as well as younger ones, whereas some others had bad performances in the Barnes maze and in the object recognition test. Hierarchical cluster analysis revealed that declarative-like memory was strongly impaired only in 7 out of 25 middle-aged/old animals. These results suggest that this analysis allows to distinguish elder populations of good and bad performers in this non-human primate model and to closely compare this to human aging.

17.
Neurobiol Aging ; 33(6): 1096-109, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20970891

RESUMO

In humans, but not in nonhuman primates, a clear relationship has been established between age-associated cognitive decline and atrophy of specific brain regions. We evaluated age-related cerebral atrophy and cognitive alterations in mouse lemur primates. Cerebral atrophy was evaluated by in vivo magnetic resonance imaging in 34 animals aged from 1.9 to 11.8 years. The caudate and splenium were atrophied in most older animals, whereas shrinkage of the hippocampus, entorhinal cortex, and septal region was identified in a subgroup of the older animals. The temporal and cingulate cortex also exhibited a severe atrophy, whereas frontal and parietal areas were spared. Measures of cognitive ability in 16 animals studied by magnetic resonance imaging (MRI) showed that both executive functions and spatial memory declined with aging. Impairment of executive functions in older animals was associated with atrophy of the septal region while spatial memory performance was related to atrophy of the hippocampus and entorhinal cortex. Mouse lemurs are the first nonhuman primates in which a clear relationship is established between age-associated cognitive alteration and cerebral atrophy.


Assuntos
Envelhecimento/patologia , Córtex Cerebral/patologia , Transtornos Cognitivos/patologia , Envelhecimento/psicologia , Animais , Atrofia , Núcleo Caudado/patologia , Cheirogaleidae , Transtornos Cognitivos/psicologia , Masculino , Estimulação Luminosa/métodos , Valor Preditivo dos Testes , Desempenho Psicomotor/fisiologia
18.
PLoS One ; 6(1): e16581, 2011 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-21304942

RESUMO

Effects of an 18-month treatment with a moderate, chronic caloric restriction (CR) or an oral supplementation with resveratrol (RSV), a potential CR mimetic, on cognitive and motor performances were studied in non-human primates, grey mouse lemurs (Microcebus murinus).Thirty-three adult male mouse lemurs were assigned to three different groups: a control (CTL) group fed ad libitum, a CR group fed 70% of the CTL caloric intake, and an RSV group (RSV supplementation of 200 mg.kg(-1).day(-1)) fed ad libitum. Three different cognitive tests, two motor tests, one emotional test and an analysis of cortisol level were performed in each group.Compared to CTL animals, CR or RSV animals did not show any change in motor performances evaluated by rotarod and jump tests, but an increase in spontaneous locomotor activity was observed in both groups. Working memory was improved by both treatments in the spontaneous alternation task. Despite a trend for CR group, only RSV supplementation increased spatial memory performances in the circular platform task. Finally, none of these treatments induced additional stress to the animals as reflected by similar results in the open field test and cortisol analyses compared to CTL animals.The present data provided the earliest evidence for a beneficial effect of CR or RSV supplementation on specific cognitive functions in a primate. Taken together, these results suggest that RSV could be a good candidate to mimic long-term CR effects and support the growing evidences that nutritional interventions can have beneficial effects on brain functions even in adults.


Assuntos
Restrição Calórica , Cognição/efeitos dos fármacos , Estilbenos/administração & dosagem , Animais , Cheirogaleidae , Hidrocortisona/análise , Masculino , Memória/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Primatas , Resveratrol , Estilbenos/farmacologia , Estresse Fisiológico/efeitos dos fármacos
19.
Age (Dordr) ; 33(1): 15-31, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20532988

RESUMO

A life-long follow-up of physiological and behavioural functions was initiated in 38-month-old mouse lemurs (Microcebus murinus) to test whether caloric restriction (CR) or a potential mimetic compound, resveratrol (RSV), can delay the ageing process and the onset of age-related diseases. Based on their potential survival of 12 years, mouse lemurs were assigned to three different groups: a control (CTL) group fed ad libitum, a CR group fed 70% of the CTL caloric intake and a RSV group (200 mg/kg.day(-1)) fed ad libitum. Since this prosimian primate exhibits a marked annual rhythm in body mass gain during winter, animals were tested throughout the year to assess body composition, daily energy expenditure (DEE), resting metabolic rate (RMR), physical activity and hormonal levels. After 1 year, all mouse lemurs seemed in good health. CR animals showed a significantly decreased body mass compared with the other groups during long day period only. CR or RSV treatments did not affect body composition. CR induced a decrease in DEE without changes in RMR, whereas RSV induced a concomitant increase in DEE and RMR without any obvious modification of locomotor activity in both groups. Hormonal levels remained similar in each group. In summary, after 1 year of treatment CR and RSV induced differential metabolic responses but animals successfully acclimated to their imposed diets. The RESTRIKAL study can now be safely undertaken on a long-term basis to determine whether age-associated alterations in mouse lemurs are delayed with CR and if RSV can mimic these effects.


Assuntos
Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Antioxidantes/administração & dosagem , Restrição Calórica , Estilbenos/administração & dosagem , Animais , Cheirogaleidae , Masculino , Resveratrol
20.
Neurobiol Aging ; 32(5): 894-906, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-19564059

RESUMO

We assessed the regional brain atrophy in mouse lemur primates from 4.7T T2-weighted magnetic resonance images. Thirty animals aged from 1.9 to 11.3 years were imaged. Sixty-one percent of the 23 animals older than 3 years involved in the study displayed an atrophy process. Cross-sectional analysis suggests that the atrophy follows a gradual pathway, starting in the frontal region then involving the temporal and/or the parietal part of the brain and finally the occipital region. Histological evaluation of five animals selected according to various stages of atrophy suggested that extracellular amyloid deposits and tau pathology cannot explain by themselves this atrophy and that intracellular amyloid deposition is more closely linked to this pathology. This study suggests that most of the age-related atrophy occurring in mouse lemurs is caused by one clinical, evolving, pathological process. The ability to follow this pathology non-invasively by MRI will allow to further characterize it and evaluate its relationship with neuropathological lesions that are involved in human diseases such as Alzheimer.


Assuntos
Envelhecimento/patologia , Encéfalo/patologia , Animais , Atrofia/patologia , Cheirogaleidae , Imageamento por Ressonância Magnética , Placa Amiloide/patologia , Proteínas tau/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA